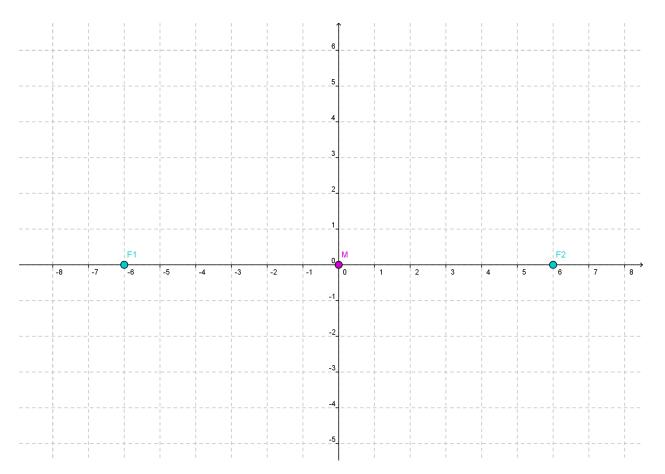
Find an equation of the described hyperbola.


Foci:
$$(-6,0)$$
, $(6,0)$
Difference of Focal Radii: 8

The difference of the focal radii is a constant number (remember our activity from the first day of hyperbolas when you measured and subtracted two distances?). In fact...

Difference of Focal Radii
$$= 2a$$

Step 1- Determine if this hyperbola is UP/DOWN or RIGHT/LEFT.

Plot the foci and the center (it is the midpoint of the segment between the foci) on a graph to determine the direction of the transverse axis.

It looks like the transverse axis is horizontal, which means this hyperbola is RIGHT/LEFT

RIGHT/LEFT hyperbola equations are in the form

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Step 2- Use the difference of the focal radii to calculate a and a^2 .

We know the difference of the focal radii = 2a, so...

$$8 = 2a$$
 $4 = a$
 $16 = a^2$

Step 3- Use the center and foci on the graph to determine c and c^2 .

On our graph, the foci are a distance of 6 away from the center, so...

$$c = 6$$
$$c^2 = 36$$

Step 4- Use the equation $c^2 = a^2 + b^2$ to calculate b^2 .

$$c^2 = a^2 + b^2$$

 $36 = 16 + b^2$
 $20 = b^2$

Step 5- Put a^2 and b^2 in the hyperbola equation.

$$\frac{x^2}{16} - \frac{y^2}{20} = 1$$